Computing Minimal Equal Sums Of Like Powers |
|
This project is dedicated to all those who are fascinated by powers and integers. In the following, k, m, n and every term ai, bj always denote positive integers. For given k and m, this page summarizes all the known minimal solutions for n of the equation: b1 >= b2 >= ... >= bn a1 > 1 m <= n 123+13 = 103+93 = 1729 1584+594 = 1344+1334 = 635318657 4224814 = 4145604+2175194+958004 = 31858749840007945920321 1445 = 1335+1105+845+275 = 61917364224 141325+2205 = 140685+62375+50275 = 563661204304422162432 236+156+106 = 226+196+36 = 160426514 9668+5398+818 = 9548+7258+4818+3108+1588 = 765381793634649192581218 Lander, Parkin and Selfridge conjectured in 1966 that: Given the power k and the left number of terms m, we are trying to lower the known right number of terms n. You can find more informations on the detailed page. If you want to participate, go to the download page. Check the EulerNet Top Producers here |
k\m | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
2 | 2 | |||||||||||||||
3 | 3 | 2 | ||||||||||||||
4 | 3
(RF) |
2 | ||||||||||||||
5 | 4
(LP) |
3
(BS) |
||||||||||||||
6 | 7
(LP) |
5
(EB&GR) |
3
(SR) |
|||||||||||||
7 | 7
(MD) |
6
(JCM) |
5
(RE) |
4
(RE) |
||||||||||||
8 | 8
(SIC) |
7
(SIC) |
5
(SIC) |
4
(NK) |
||||||||||||
9 | 10
(JW) |
8
(JW) |
8
(JW) |
6
(RE) |
5
(RE) |
|||||||||||
10 | 12
(JW) |
12
(NK) |
11
(JW) |
9
(JW) |
6
(DMO) |
|||||||||||
11 | 15
(JW) |
14
(JW) |
11
(NK) |
10
(NK) |
9
(NK) |
8
(NK) |
7
(NK) |
|||||||||
12 | 19
(JW) |
16
(SIC) |
15
(JW) |
14
(SIC) |
14
(SIC) |
11
(JW) |
7
(GC) |
|||||||||
13 | 21
(JW) |
20
(JW) |
18
(JW) |
18
(JW) |
15
(JW) |
15
(JCM) |
13
(FY) |
9
(GC) |
||||||||
14 | 25
(JW) |
21
(JW) |
19
(JW) |
18
(JW) |
17
(JW) |
16
(JW) |
13
(GC) |
12
(JW) |
9
(JW) |
|||||||
15 | 28
(JW) |
24
(JW) |
23
(JW) |
19
(JW) |
20 | 16
(JW) |
14
(JW) |
14
(JW) |
13
(JW) |
11
(JW) |
||||||
16 | 49
(JW) |
36
(JW) |
35
(SIC) |
29
(SIC) |
30 | 31
(SIC) |
23
(SIC) |
22
(GC) |
22
(SIC) |
22
(SIC) |
12
(TA) |
|||||
17 | 39
(JW) |
40 | 35
(JW) |
33
(JW) |
27
(SIC) |
28 | 23
(TA) |
24
(GC) |
23
(GC) |
20
(DM) |
20
(SIC) |
18
(GC) |
16
(SIC) |
14
(GC) |
||
18 | 57
(JW) |
57
(JW) |
57
(JW) |
44
(FY) |
43
(TA) |
34
(TA) |
35 | 36
(TA) |
31
(SIC) |
28
(SIC) |
29
(GC) |
25
(SIC) |
15
(SIC) |
16
(GC) |
||
19 | 51
(JW) |
52 | 53 | 51
(JW) |
43
(GC) |
40
(FY) |
41
(FY) |
36
(FY) |
33
(GC) |
29
(GC) |
30 | 31
(GC) |
23
(SIC) |
24 | 17
(SIC) |
17
(GC) |
20 | 61
(JW) |
62 | 61
(FY) |
60
(FY) |
59
(FY) |
53
(TA) |
39
(TA) |
40 | 35
(LL) |
35
(FY) |
35
(FY) |
35
(FY) |
35
(GC) |
35
(FY) |
35
(FY) |
26
(GC) |
21 | 75
(FY) |
72
(FY) |
67
(TA) |
60
(FY) |
57
(TA) |
50
(FY) |
51 | 46
(TA) |
41
(GC) |
39
(GC) |
37
(GC) |
34
(GC) |
26
(SIC) |
25
(LL) |
25
(TA) |
24
(SIC) |
22 | 95
(TA) |
75
(FY) |
76 | 72
(FY) |
73 | 73
(FY) |
59
(TA) |
57
(FY) |
54
(FY) |
54
(FY) |
52
(TA) |
36
(GC) |
37 | 37
(GC) |
36
(GC) |
37
(GC) |
23 | 105
(FY) |
91
(FY) |
87
(FY) |
86
(FY) |
81
(FY) |
72
(FY) |
62
(FY) |
63 | 62
(FY) |
53
(GC) |
49
(FY) |
47
(LL) |
41
(TA) |
36
(GC) |
37
(GC) |
33
(GC) |
24 | 124
(FY) |
116
(FY) |
109
(FY) |
97
(FY) |
85
(TA) |
85
(FY) |
71
(FY) |
72 | 65
(LL) |
66 | 57
(FY) |
58 | 58
(FY) |
55
(GC) |
52
(FY) |
53 |
25 | 137
(FY) |
118
(FY) |
104
(FY) |
94
(GC) |
89
(GC) |
90 | 81
(GC) |
82 | 80
(GC) |
80
(GC) |
74
(SIC) |
70
(GC) |
68
(SIC) |
69 | 69
(DM) |
67
(GC) |
26 | 155
(FY) |
133
(LL) |
119
(FY) |
116
(GC) |
111
(FY) |
106
(FY) |
99
(FY) |
100 | 81
(GC) |
82 | 75
(TA) |
72
(LL) |
70
(TA) |
52
(SMS&JW) |
53 | 54
(LL) |
27 | 162
(LL) |
146
(TA) |
132
(FY) |
118
(FY) |
119 | 104
(FC) |
99
(FC) |
100 | 87
(GC) |
88 | 89 | 63
(GC) |
64 | 65 | 66 | 56
(GC) |
28 | 183
(LL) |
147
(FY) |
148
(JCM) |
128
(FY) |
129 | 124
(JCM) |
124
(TA) |
124
(FY) |
96
(LL) |
96
(LL) |
96
(GC) |
97
(JCM) |
98
(GC) |
74
(GC) |
73
(GC) |
74
(FY) |
29 | 173
(TA) |
168
(FC) |
145
(FY) |
146 | 147 | 136
(LL) |
137 | 119
(LL) |
120 | 108
(LL) |
109 | 102
(GC) |
96
(GC) |
89
(GC) |
90 | 84
(FY) |
30 | 191
(FY) |
188
(FY) |
189 | 164
(FY) |
139
(FY) |
140 | 141 | 142 | 133
(LL) |
134
(FC) |
135
(GC) |
106
(FY) |
107 | 108
(LL) |
109
(LL) |
80
(TA) |
31 | 211
(GC) |
200
(GC) |
199
(GC) |
191
(GC&JW) |
184
(GC&JW) |
182
(GC&JW) |
160
(TA&JW) |
161 | 162 | 162
(GC&JW) |
153
(TA&JW) |
151
(TA&JW) |
149
(TA&JW) |
150 | 143
(TA&JW) |
127
(TA&JW) |
32 | 230
(FY) |
214
(FY) |
210
(TA) |
210
(FY) |
194
(FY) |
195 | 191
(SIC) |
179
(SIC) |
180 | 181 | 179
(TA) |
175
(LL) |
168
(GC) |
167
(LL) |
157
(GC) |
158 |
k | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
m+n | 3 |
4 |
4 |
5 (LP,BS) |
6 (SR) |
8 (RE,MD,JCM) |
8 (NK,SIC) |
10 (RE,JW) |
11 (DMO) |
14 (NK) |
14 (GC) |
17 (GC) |
18 (JW) |
21 (JW) |
23 (TA) |
28 (GC) |
k | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 |
m+n | 28 (SIC) |
32 (SIC) |
34 (LL) |
39 (SIC,LL) |
41 (SIC) |
44 (LL) |
48 (LL) |
52 (SIC,LL) |
52 (SIC) |
61 (SIC) |
63 (SIC) |
67 (SIC) |
69 (SIC) |
72 (SIC) |
75 (SIC) |
ACO: Andrea Concaro | AL: Aloril | AN: Aleksi Niemelä | BS: Bob Scher | DA: David Alten |
DM: Douglas McNeil | DMO: Duncan Moore | EB: Edward Brisse | EB2: Eric Bainville | FC: Frank Clowes |
FY: Fumitaka Yura | GC: Greg Childers | GR: Giovanni Resta | JC: Joe Crump | JCM: Jean-Charles Meyrignac |
JMC: John Michael Crump | JML: Joe MacLean | JW: Jaroslaw Wroblewski | KEK: Kjeld Elholm Kristensen | KO: Kevin O'Hare |
LHA: Larry Hays | LHU: Luke Huitt | LL: Laurent Lucas | LM: Luigi Morelli | LP: Lander and Parkin |
MD: Mark Dodrill | ML: Marcin Lipinski | MW: Mac Wang | NH: Norman Ho | NK: Nuutti Kuosa |
PG: Pascal Gelebart | RE: Randy Ekl | RF: Roger Frye | RS: Rizos Sakellariou | SIC: Scott I.Chase |
SR: Subba-Rao | TA: Torbjörn Alm | TN: Tommy Nolan |
power (k) |
number of left terms (m) |
number of right terms (n), unexplored |
number of right terms (n), known lower bound |
number of right terms (n), best lower bound currently found |
number of right terms (n), best lower bound conjectured |
number of right terms (n), best lower bound proved |
number of right terms (n) that doesn't need to be explored |
© 1999-2005 Jean-Charles Meyrignac <euler@free.fr> |