To many mathematicians, the mere mention of the number 1729 recalls the following
incident involving mathematicians G.H. Hardy and Srinivasa Ramanujan:
Once, in the taxi from London [to Putney], Hardy noticed its
number, 1729. He must have thought about it a little because he entered the
room where Ramanujan lay in bed and, with scarcely a hello, blurted out his
disappointment with it. It was, he declared, "rather a dull number," adding
that he hoped that wasn't a bad omen.
"No, Hardy," said Ramanujan. "It is a very interesting number.
It is the smallest number expressible as the sum of two [positive] cubes in
two different ways."
In memory of this incident, the least number which is the sum of two positive
cubes in n different ways is called the nth taxicab
number, which I will denote Taxicab(n). It is shown that for any
n >= 1, there indeed exist numbers which are the sum
of two positive cubes in n ways, which guarantees the existence
of Taxicab(n) for n >= 1.
Let's note Cabtaxi(n) the smallest positive integer which can be
written as the sum of two positive or negative cubes in n ways.
Taxicab(1) = 2
= 13 + 13
trivial.
Taxicab(2) = 1729
= 13 + 123
= 93 + 103
first published by Bernard Frénicle de Bessy in 1657.
Taxicab(3) = 87539319
= 1673 + 4363
= 2283 + 4233
= 2553 + 4143
found by Leech in 1957.
Taxicab(4) = 6963472309248
= 24213 + 190833
= 54363 + 189483
= 102003 + 180723
= 133223 + 166303
found by E. Rosenstiel, J.A. Dardis, and C.R. Rosenstiel in 1991.
Taxicab(5) = 48988659276962496
= 387873 + 3657573
= 1078393 + 3627533
= 2052923 + 3429523
= 2214243 + 3365883
= 2315183 + 3319543
found by David Wilson on November 21, 1997 then by D.J Bernstein in 1998, and by Tomas Womack in December 1998.
Other solutions found by David Wilson are 490593422681271000, 6355491080314102272,
27365551142421413376, 1199962860219870469632, 111549833098123426841016.
D.J Bernstein discovered 391909274215699968 in 1998.
Taxicab(6) <= 24153319581254312065344
= 289062063 + 5821623
= 288948033 + 30641733
= 286574873 + 85192813
= 270932083 + 162180683
= 265904523 + 174924963
= 262243663 + 182899223
found by Randall L. Rathbun in 2002
David Wilson discovered 8230545258248091551205888 in 1997.
D.J Bernstein verified that Taxicab(6)>= 1018
Stuart Gascoigne verified that Taxicab(6) > 6.8*10^19 in May 2003.
C.S Calude, E. Calude and M.J Dinneen showed that 24153319581254312065344 was Taxicab(6) with a probability of 99%
Taxicab(7) <= 24885189317885898975235988544
= 26486609663 + 18472821223
= 26856356523 + 17667420963
= 27364140083 + 16380248683
= 28944061873 + 8604473813
= 29157349483 + 4595311283
= 29183751033 + 3094814733
= 29195268063 + 587983623
found by Christian Boyer in 2006
http://cboyer.club.fr/Taxicab.htm
Taxicab(8) <= 50974398750539071400590819921724352
= 2995120635763 + 2888736628763
= 3363799426823 + 2346048294943
= 3410757278043 + 2243762461923
= 3475245790163 + 2080291582363
= 3675895857493 + 1092768173873
= 3702983383963 + 583604532563
= 3706336380813 + 393041470713
= 3707799043623 + 74673919743
found by Christian Boyer in 2006
http://cboyer.club.fr/Taxicab.htm
Taxicab(9) <= 136897813798023990395783317207361432493888
= 416321768370643 + 401534391397643
= 467568120327983 + 326100712996663
= 474095261647563 + 311882982206883
= 483059164832243 + 289160529948043
= 510949524191113 + 151894776167933
= 514714690370443 + 81121030025843
= 515180756932593 + 54632764428693
= 515300421426563 + 40768778055883
= 515384067063183 + 10379674843863
found by Christian Boyer in 2006
http://cboyer.club.fr/Taxicab.htm
Taxicab(10) <= 7335345315241855602572782233444632535674275447104
= 156953306675731283 + 151378465556910283
= 176273181363648463 + 122939968799740823
= 178733913641130123 + 117579884291993763
= 182113305141754483 + 109013519790411083
= 192627970620048473 + 57264330615309613
= 194047438269655883 + 30582628319741683
= 194223145363586433 + 20596552189616133
= 194268258877813123 + 15369829327066763
= 194293797782705603 + 9040693335688843
= 194299793282818863 + 3913137416135223
found by Christian Boyer in 2006
http://cboyer.club.fr/Taxicab.htm
Taxicab(11) <= 2818537360434849382734382145310807703728251895897826621632
= 114105053953256640563 + 110052144459873773563
= 128150602851372430423 + 89377357317411576143
= 129939555217101597243 + 85480575880279463523
= 132396372838055506963 + 79252828887628855163
= 136001929743147327863 + 67163799217793993263
= 140040534640775237693 + 41631168357330086473
= 141072487622039824763 + 22233570788452201363
= 141200226679327334613 + 14973693441850926513
= 141233024204170138243 + 11173865920777534523
= 141251590988026971203 + 6572584055045786683
= 141255949716609311223 + 2844850901530304943
found by Christian Boyer in 2006
http://cboyer.club.fr/Taxicab.htm
Taxicab(12) <= 73914858746493893996583617733225161086864012865017882136931801625152
= 339006115295125479103763 + 326964921190284981246763
= 380735441071427490777823 + 265540128590029792711943
= 386050418550008845400043 + 253962790940310286117923
= 393349623701862911178163 + 235460154625145328680363
= 404061733266890711072063 + 199543647476065953975463
= 416060428417743231176993 + 123686201189627686902373
= 419126360725080319361963 + 66055938812491490240563
= 419505873464281511126313 + 44486843215739102661213
= 419603314910589480711043 + 33197555650630055058923
= 419658476825428131435203 + 19527147227541032226283
= 419658897311362294765263 + 19330975426181222410263
= 419671426608046263634623 + 8452052028446535976743
found by Christian Boyer in 2006
http://cboyer.club.fr/Taxicab.htm
Cabtaxi(1) = 0
= 13 - 13
trivial.
Cabtaxi(2) = 91
= 33 + 43
= 63 - 53
Cabtaxi(3) = 728
= 63 + 83
= 93 - 13
= 123 - 103
Note that the terms 91 and 728 also are numerators of expansion of (1-x)^(-1/3).
Is this a coincidence ?
(This is sequence A004117 from the Online
Encyclopedia of Integer Sequences)
Cabtaxi(4) = 2741256
= 1083 + 1143
= 1403 - 143
= 1683 - 1263
= 2073 - 1833
Cabtaxi(5) = 6017193
= 1663 + 1133
= 1803 + 573
= 1853 - 683
= 2093 - 1463
= 2463 - 2073
found by Randall Rathbun.
Cabtaxi(6) = 1412774811
= 9633 + 8043
= 11343 - 3573
= 11553 - 5043
= 12463 - 8053
= 21153 - 20043
= 47463 - 47253
found by Randall Rathbun.
Cabtaxi(7) = 11302198488
= 19263 + 16083
= 19393 + 15893
= 22683 - 7143
= 23103 - 10083
= 24923 - 16103
= 42303 - 40083
= 94923 - 94503
found by Randall Rathbun.
Cabtaxi(8) = 137513849003496
= 229443 + 500583
= 365473 + 445973
= 369843 + 442983
= 521643 - 164223
= 531303 - 231843
= 573163 - 370303
= 972903 - 921843
= 2183163 - 2173503
found by D.J. Bernstein.
Cabtaxi(9) = 424910390480793000
= 6452103 + 5386803
= 6495653 + 5323153
= 7524093 - 1014093
= 7597803 - 2391903
= 7738503 - 3376803
= 8348203 - 5393503
= 14170503 - 13426803
= 31798203 - 31657503
= 59600103 - 59560203
found by Duncan Moore on the 01/31/2005.
Jaroslaw Wroblewski found 825001442051661504 on the 01/24/2005.
Randall Rathbun found 10933313592720956472 in July 2002.
Cabtaxi(10) <= 933528127886302221000
= 83877303 + 70028403
= 84443453 + 69200953
= 97733303 - 845603
= 97813173 - 13183173
= 98771403 - 31094703
= 100600503 - 43898403
= 108526603 - 70115503
= 184216503 - 174548403
= 413376603 - 411547503
= 774801303 - 774282603
found by Christian Boyer in 2006.
Cabtaxi(11) <= 11358236731992639122907000
found by Christian Boyer in 2006.
Cabtaxi(12) <= 1912223147184127402358643000
found by Christian Boyer in 2006.
Cabtaxi(13) <= 23266019031789278104497609381000
found by Christian Boyer in 2006.
Cabtaxi(14) <= 567434938166308703690592195193209000
found by Christian Boyer in 2006.
Cabtaxi(15) <= 31136289927061691188910174934641764248000
found by Christian Boyer in 2006.
Cabtaxi(16) <= 1577146493675455843791867090964409284453944000
found by Christian Boyer in 2006.
Cabtaxi(17) <= 125394186272654467772359976801307288979079725608000
found by Christian Boyer in 2006.
Cabtaxi(18) <= 768476640447541361234827077147113303513533370352195096000
found by Christian Boyer in 2006.
Cabtaxi(19) <= 298950477236981197723488725070538575992924211134299879660632000
found by Christian Boyer in 2006.
Cabtaxi(20) <= 2149172021033860338362430683389430843511963750524516489973424104024000
found by Christian Boyer in 2006.