This project is dedicated to all those who are fascinated by powers and integers.
In the following, k, m, n and every
term ai, bj
always denote positive integers.
For given k and m, this page
summarizes all the known minimal solutions for n of the equation:
Lander, Parkin and Selfridge conjectured in 1966 that:
Given the power k and the left number of terms m,
we are trying to lower the known right number of terms n.
You can find more informations on the detailed page
.
If you want to participate, go to the download page
.
You can check the project status here.
Here are the newsletter 1, newsletter
2
27th January 2000: New home page: http://euler.free.fr
!
26th January 2000: Using the newest beta 9, Nuutti Kuosa found (10,2,12)
in 2 hours !
11210+9910=10910+10310+8310+7910+7210+5910+5910+5210+2010+1510+510+510
25th January 2000: Euler2000 beta 9 is now available, and since ALL Resta's
programs are here, client/server is now the priority !
4th January 2000: Euler2000 beta 7 is currently in test and a lot of new
solutions have already been found !
Check this page for more results
Also, here are two new links, the first one is my software company Quantic
Dream and the second one is from a participant: mathonline.cjb.net
(very nice name)
1th January 2000: Happy new year to everybody ! And yes, this is our
first birthday ! The project started one year ago.
Thanks to your work, we already found some great results, and 2000 will see more
results. Thanks !
30th November: Larry Hays found a new solution to (6,2,5):
201116+150596=188796+156806+148546+138126+24996
27th November: Corrected some bugs in Euler2000 beta 2.
NEW ! (6,2,5) search has started ! A new solution to (6,2,5) has already
been found by Larry Hays and Tommy Nolan !
66236+3236 = 66156+29126+6426+4346+3636
22th November: Corrected some bugs in Euler2000 beta 1.
21th November: The updates are less frequent, since I'm working onto Euler2000.
You can download the beta
if you want to check the differences.
(6,2,5) Resta's implementation -slightly improved- now added, new AVL algorithm
very soon.
7th November: Nuutti Kuosa found a new solution to (7,4,4):
11057+6667+4317+3147=10987+7527+5367+1307=2072756588947872048896
6th November 1999: Two highly recommended links:
http://pobox.com/~djb/sortedsums.html
(D. J. Bernstein)
http://www.nease.net/~chin/eslp/
(Chen Shuwen)
2nd November 1999: Kevin O'Hare found (13,1,36):
99013=98913+70913+42313+30513+22513+15713+11913+9813+7313+5213+4513+3713*2+3613*2+3113+3013+2813+2713+2513+2413*4+2213*2+2013+1613+1513*2+913+713*2+313*3
1st November 1999: Check the beautiful article of Roger E. Frye how he
discovered (4,1,3) in 1988. Very instructive !
Finding 95800^4 + 217519^4 + 414560^4 = 422481^4
(on the site, courtesy of R. Frye)
Older results can be found here
k\m | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
2 | 2 | |||||||||||||
3 | 3 | 2 | ||||||||||||
4 | 3 | 2 | ||||||||||||
5 | 4 | 3 | ||||||||||||
6 | 7 | 5 | 3 | |||||||||||
7 | 7 | 6 | 5 | 4 | ||||||||||
8 | 10 | 8 | 7 | 5 | ||||||||||
9 | 12 | 10 | 9 | 6 | 5 | |||||||||
10 | 14 | 12 | 13 | 12 | 13 | 6 | ||||||||
11 | 16 | 16 | 14 | 14 | 13 | 10 | 9 | 8 | 9 | |||||
12 | 26 | 27 | 28 | 22 | 23 | 18 | 17 | 17 | 9 | |||||
13 | 36 | 37 | 38 | 39 | 31 | 32 | 28 | 25 | 22 | 22 | 11 | 12 | ||
14 | 40 | 41 | 42 | 43 | 44 | 40 | 38 | 28 | 29 | 30 | 21 | 22 | 22 | 14 |
15 | 46 | 42 | 43 | 44 | 45 | 45 | 44 | 45 | 46 | 38 | 39 | 40 | 38 | 39 |
16 | 77 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 80 | 81 | 47 | 48 |
17 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 |
18 | 96 | 97 | 98 | 99 | 100 | 101 | 85 | 86 | 86 | 87 | 88 | 89 | 90 | 91 |
19 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 106 | 107 | 108 | 109 | 110 | 111 | 112 |
20 | 167 | |||||||||||||
21 | 240 | 253 | ||||||||||||
22 | 300 | |||||||||||||
23 | 447 | 420 | ||||||||||||
24 | 485 | |||||||||||||
25 | 871 | |||||||||||||
26 | 1376 | |||||||||||||
27 | 1471 |
LEGEND
power (k) |
number of left terms (m) |
number of right terms (n), unexplored |
number of right terms (n), known lower bound |
number of right terms (n), best lower bound currently known |
number of right terms (n), best lower bound conjectured |
number of right terms (n), best lower bound proved |
number of right terms (n) that doesn't need to be explored |
HALL OF FAME
The following remarkable results were found by this project:
(6,2,5) 11176+7706=10926+8616+6026+2126+846
(Edward Brisse and Giovanni Resta, 04/20/1999)
(6,2,5) 66236+3236=66156+29126+6426+4346+3636
(Larry Hays and Tommy Nolan, 11/27/1999)
(6,2,5) 201116+150596=188796+156806+148546+138126+24996
(Larry Hays, 11/30/1999)
(7,1,7) 5687=5257+4397+4307+4137+2667+2587+1277
(Mark Dodrill, 03/20/1999)
(7,4,4) 3437+2817+467+357=3547+1127+527+197
(Michael Lau, 05/12/1999)
(7,4,4) 5547+4127+3657+1467=5367+4397+4377+657
(Nuutti Kuosa, 09/05/1999)
(9,2,10) 1379+699=1219+1169*2+1159+899+529+289+269+149+99
(Luigi Morelli, 03/12/1999)
(10,1,14) 12010=11510+10410+9110+8010*2+7410+6310+5510+4010+3510+3310+1310+1010+510
(Torbjörn Alm, 10/14/1999)
(10,2,12) 11210+9910=10910+10310+8310+7910+7210+5910+5910+5210+2010+1510+510+510
(Nuutti Kuosa, 01/26/2000)
(10,4,12) 5310+4410*2+2210=5110+4910+4310+3910+2910+2810+1710*2+1610+1310+710+410
(Eric Bainville)
(10,6,6) 15110+14010+12710+8610+6110+2210=14810+14610+12110+9410+4710+3510
(Nuutti Kuosa, 09/03/1999)
(11,1,16) 7811=7111+6911+6611+6411+6311+5211+4711+4311+2911+2311*2+2211+1411+1211+711+111
(Luigi Morelli, 07/20/1999)
(11,2,16) 6911+511=6111+6011+5911*2+5511*2+4211+3311*2+2311+1911+1111+1011+911+611+111
(Luigi Morelli, 07/27/1999)
(11,3,14) 7211+5611+1211=6911+6611+5311+4911+4311+3411*2+2011+911*2+811+411*2+211
(Nuutti Kuosa, 09/12/1999)
(11,5,13) 5211+3011+2611+2411+1611=5011+4711+3611+3311+2511+2011+1811+1211+1111+811*2+711+511
(Nuutti Kuosa, 08/31/1999)
(11,6,10) 4611+3911+3711+2211+411*2=4311*2+4111+3111+2811+2611+2311+1811+1611+1511
(Nuutti Kuosa, 08/31/1999)
(11,7,9) 4811+2811+2011+1511*2+1411+111=4411+4311+4211+3611*2+3011+2211+1711+311
(Nuutti Kuosa, 09/20/1999)
(11,8,8) 6711+5211+5111*2+3911+3811+3511+2711=6611+6011+4711+3611+3211+3011+1611+711
(Nuutti Kuosa, 08/09/1999)
(12,9,9) 4312+3312+3112+2312+2012+1612*2+1212+612=4112+4012+3212+3012*3+2912+512*2
(Nuutti Kuosa, 08/12/1999)
(13,1,36) 99013=98913+70913+42313+30513+22513+15713+11913+9813+7313+5213+4513+3713*2+3613*2+3113+3013+2813+2713+2513+2413*4+2213*2+2013+1613+1513*2+913+713*2+313*3
(Kevin O'Hare, 11/02/1999)
(13,5,31) 332713+11513+4713+3213+2713=329113+284013+218013+132313+64413+44313+30313+21113+15713+8813+6513+3813+2013+1513+1413+1213*2+1013*2+913*2+613*3+513*2+413*3+213*2
(Joe Crump, 10/20/1999)
(13,7,28) 7713+7413+6113+3313+2813+2613+2213=8013+4613+3913+1613*2+1313+1013+913+813*3+613+513*3+413*8+313*5
(Joe Crump, 10/03/1999)
(13,8,25) 25613+20013+18913+7513+6013+3713+3213+2113=25713+17613+12513+10013+4713+2713+2413+1713+1513*2+1113+1013+713+613+513*2+313*5+213*4
(Joe Crump, 10/05/1999)
(13,9,22) 555613+36613+26313+19213+14113+3313+1513+1313+1013=541613+489813+460913+229013+134713+84313+54213+9613+4713+4013+2613+2213+2013+1213+813+613*2+313+213*4
(Joe Crump, 10/09/1999)
(13,10,22) 171713+97113+57913+5713+2413+2213+1613+413+313+113=160013+150813+160513+40413+28813+19313+13713+10813+6913+4613+3913+3313+1913+1413+1313+1113+913+813+613*3+213
(Joe Crump, 10/08/1999)
(13,11,11) 3113+2713+2313*2+2113+1913+1013*3+613*2=2913*2+2813+2513+2413+2213+1513+513*2+313+113
(Nuutti Kuosa, 06/07/1999)
(14,1,40) 3814=3514*2+3114*4+3014*2+2914+2814+2614*4+2514*2+2214+2114*2+2014+1814*2+1714+1414*2+1314*3+1214*2+914+814+414*7+214
(Frank Clowes, 10/20/1999)
(14,9,31) 96514+85614+82314+58214+37314+20714+15914+8914+6814=98314+27714+5414+3214+2314+1514+1414+1314+1214+1014+914*4+614*3+414+314*12+114
(Joe Crump, 09/29/1999)
(14,11,21) 105314+88514+72814+70714+13214+9714+2714+2514+2014+1614+1414=106014+49714+33714+24614+18614+6814+5714+4514+3314+2214+1814+914*2+714+414+314*6
(Joe Crump, 10/14/1999)
(14,14,14) 2514+2014*4+1914*2+1814*2+1214+914+814*2+114=2414+2214*4+1614*2+1514*3+1114*2+214*2
(Kevin O'Hare, 07/14/1999)
(16,24,25) 1391716+527816+294916+92616+63916+22016+16516+11216+5716+3316+2416+2016+1916+1816+1516*2+1316+1216*3+1016+216*2+116=1391116+1017616+817316+196716+130116+42416+27816+13416+9216+7616+4216+2916+1716+716*3+616*5+516*2+416*2
(Joe Crump, 10/03/1999)
(17,1,71) 3017=2817*2+2617+2517*6+2217+2117*5+2017*2+1917*8+1717*8+1617*3+1517*4+1417*5+1317*4+1117*8+717+617+517+417+317*4+217*5+117
(Larry Hays, 10/21/1999)
(19,8,106) 114019+63219+15419+13219+11419+5619+5019+1519=110619+79119+109119+83219+48619+39519+28819+24019+20019+8419+7119+6419+4519+3019+2719+2419+2119+2019+1919+1819+1319+1219+1119*5+919*2+719*6+619*3+519*19+419*40+319+219*7+119
(Joe Crump, 10/21/1999)
Progress | Records | Download | Most wanted | Identities | Links |
Last update: 27th January 2000