Links
References
- [1] Hua L.K., Introduction
to Number Theory, Springer, 1982.
- [2] H.L.Dorwart and O.E.Brown,
The Tarry-Escott Problem, Amer. Math. Monthly, 44(1937), 613-626.
- [3] G.H.Hardy and E.M.Wright,
An
Introduction to the Theory of Numbers, 5th ed., Oxford University
Press, London, 1979, 328-339.
- [4] E.Rees and C.Smyth,
On the constant in the Tarry-Escott problem, Fifity Years of Poly-
nomials, Lecture Notes in Math., vol. 1415, Springer, Berlin and New York,
1990, 196-208 MR91g:11030.
- [5] A.Gloden, Mehrgradige
Gleichungen, Noordhoff, Groningen, 1944.
- [6] T.N.Sinha, Diophantine
systems of the Tarry-Escott type, Anupam ,India,1984
- [7] J.Chernick, Ideal solutions
of the Tarry-Escott problem, Amer. Math. Monthly, 44(1937), 626-633
- [8] H.Gupta, A system of
equations having no nontrivial solutions, J. of Research, National
Bureau of Standards 71B(1967), 181-182
- [9] L.E.Dickson, History
of the theory of numbers, vol. II: Diophantine Analysis, reprint,
New York: Chelsea, 1966, 550-552, 705-716
- [10] L.J.Lander and T.R.Parkin,
Equal sums of biquadrates, Math. Comp., 20(1966), 450-451
- [11] L.Lander, T.Parkin and
J.Selfridge, A survey of
equal sums of like powers, Math. Comp., 21(1967), 446-459
- [12] A.J.Zajta, Solutions
of the Diophantine Equation A4+B4=C4+D4,
Math. Comp., 41(1983), 635-659
- [13] A.Moessner, Einige
Numerische Identitaten, Proc. Indian Acad. Sci. Sect. A, 10(1939),
296-306
- [14] L. J. Lander, Geometric
Aspects of Diophantine Equations Involving Equal Sums of Like Powers,
Amer. Math. Monthly, 75(1968), 1061-1073
- [15] J.Delorme, On the
Diophantine Equation x16+ x26+
x36 = y16+ y26+
y36, Math. Comp., 59(1992), 703-715
- [16] R.N.Singh, Equal sum
of like powers, Math. Student, 56(1988), no,1-4, 192-194, MR90m:11044.
- [17] G.Xeroudakes and A.Moessner,
On equal sums of like powers, Proc. Indian Acad. Sci. Sect.A, 48(1958),
245-255
- [18] A.Choudhry, The Diophantine
system Sum(xir)=Sum(yir), r
=1,3,5., Bull. Calcutta Math. Soc. 83(1991), 85-86
- [19] G.Palama, Diophantine
systems of the type Sum(aik)=Sum(bik),(
k=1, 2, ..., n, n+2, n+4,..., n+2r ), Scripta Math., 19(1953), 132-134
- [20] A.Gloden, Two theorems
on multi-degree equalities, Amer. Math. Monthly, 55(1948), 86-88
- [21] A.Moessner, On equal
sums of powers, Math. Student, 15(1947), 83-88
- [22] C.J.Smyth,
Ideal 9th-Order Multigrades and Letac's Elliptic Curve, Math. Comp.,
57(1991), 817-823, MR92b:11019
- [23] G.Tarry, L'intermediaire
des mathematiciens,19(1912), 200, 219-221; 20(1913), 68-70.
- [24] E.B.Escott, Logarithmic
Series, Quarterly Journal of Math., 41(1910), 141-167.
- [25] A.Letac, Gazeta Matemetica,
48(1942), 68-69
- [26] Simcha Brundo and Irving
Kaplansky, Equal sums of sixth powers, J.Number Theory, 6(1974),401-403
- [27] Simcha Brundo, Triples
of sixth powers with equal sums, Math. Comp. 30(1976),646-648
- [28] Andrew
Bremner, A geometric approach to equal sums of sixth powers,
Proc. London Math. Soc. 43(1981), 544-581
- [29] Simcha Brundo, On
generating infinitely many solutions of the Diophantine equation A6+B6+C6
= D6+E6+F6, Math. Comp. 24(1970),
453-454.
- [30] Simcha Brundo, Some
new results on Equal sums of like powers, Math. Comp. (23)1969,877-880.
- [31] K.Subba Rao, On sums
of sixth powers, J.London Math. Soc.,v.9, 1934, 172-173.
- [32] T.N.Sinha, A note
on equal sums of like powers, Math. Student, 46(1978), no.2-4, 121-123,
MR84e:10025
- [33] G.Palama, Multigrade
normali del 9o ordine inverso del teorema di Gloden, Uni.
Roma 1st Naz. Alta Mat. Rend. Mat e Appl., 1950,Vol.5,Part.9, 229-236.
- [34] T.N.Sinha, Some systems
of Diophantine equations of the Tarry-Escott type, Jour. Ind. Math.
Soc. V.30,1966,15-25.
- [35] A.Gloden, Parametric
solutions of two multi-degreed equalities, Amer. Math. Monthly, v.55,
1948, 86-88
- [36] A.Gloden, Uber mehrgradige
Gleichungen, Arch. Math., v.1, 1949, 482-483
- [37] A.Golden, Note on
systems of diophantine equations, Scrip.Math., 15(1949), 163-164.
- [38] A.Gloden, Zwei Parameterlosungen
einer mehrgradigen Gleichung, Arch.Math., v.1, 1949, 480-482
- [39] J.L.Burchnall & T.W.Chaundy,
A type of "Magic Square" in Tarry's problem,Quart. J.
Math., 8(1937), 119-130
- [40] A. Choudhry, Multigrade
Chains with Odd Exponents, J.Number Theory, 42(1992), 134-140, MR94a:11044
- [41] J.H.Silverman,
Taxicabs and sums of two cubes, Amer. Math.Monthly,1993, 331-340.
- [42] E.Rosenstiel, J.A.Dardis
and C.R.Rosenstiel, The four least solutions in distinct positive integers
of the Diophantine equation s=x3+y3=z3+w3=u3+v3=m3+n3,
Bull. Inst. Math. Appl. 27(1991), no.7, 155-157, MR92i:11134.
- [43] J.Leech, Some solutions
of Diophantine equations. Proc. Cambridge Philos. Soc.,v.53,(1957),
778-780.
- [44] Peter
Borwein and Colin Ingalls, The
Prouhet-Tarry-Escott Problem Revisited, Enseign.Math. (2).40.(1994),no.1-2,3-27.
- [45] Noam
D. Elkies, On A4 = B4 + C4 + D4,
Math. Comp. (51)1988, 825-835
- [46] L.J.Lander and T.R.Parkin,
A counterexamples to Euler's sums of powers conjecture, Math. Comp.,
21(1967), 101-103
- [47] Randy L. Ekl, Equal
sums of four seventh powers, Math. Comp., 65 (1996), pp.
1755-1756.
- [48] T.N.Sinha, Some systems
of Diophantine equations of the Tarry-Escott type, Jour. Ind. Math.
Soc., 30(1966), 15-25.
- [49] Guy, R. K. Unsolved
Problems in Number Theory, 2nd ed. New York: Springer-Verlag, 1994.
- [50] L.Hahn, The Tarry-Escott
Problem (Problem 10284), Amer. Math. Monthly,1995, 843-844.
- [51] H.L.Dorwart, Sequences
of ideal solutions in the Tarry-Escott problem, Bull. Amer. Math. Soc.,
53(1947), 381-391.
- [52] S.Sastry, On equal
sums of like powers, Math. Student, 15(1947), 29-32.
- [53] A.Moessner, On the
multiple identity x1n + x2n +
x3n + x4n + x5n
= y1n + y2n + y3n
+ y4n + y5n for n
=1, 3, 5, 7 , Scrip. Math. 18(1952), 90-91.
- [54] A.Bremner
and R.K.Guy, A Dozen Difficult Diophantine Dilemmas, Amer. Math.
Monthly, 1988, 31-36.
- [55] S.Sastry and T.Rai, On
equal sums of like powers, Math. Student, 16(1948), 18-19.
- [56] S.Sastry, On sums
of powers, Jour.London.Math.Soc., 9(1934), 170-171.
- [57] J.Leech, On A4
+ B4 + C4 + D4= E4,
Proc. Cambridge Philos .Soc., 54(1958), 554-555.
- [58] T.N.Sinha, On the
Tarry-Escott problem, Amer. Math. Monthly, 7391966), 280-285.
- [59] A.Choudhry, Symmetric
Diophantine systems, Acta Arithmetica, 59(1991), 291-307.
- [60] A.Choudhry, Equal
sums of Seventh powers, Rocky Mountain Journal of Mathematics, Volume
30, Number 3, Fall 2000
- [61] A.Choudhry, On
Equal sums of Sixth powers, Rocky Mountain Journal of Mathematics,
Volume 30, Number 3, Fall 2000
- [62] A.Choudhry, Idea Solutions
of the Tarry-Escott problem of Degree Four and a Related Diophantine System,
L'Enseignement Mathematique, Vol. 46 (2000), pp.313-323.
- [63] Randy L. Ekl, New
results in equal sums of like powers, Math. Comp. 67 (1998), 1309-1315.
Other References
- The following are some references on "Equal
sums of like powers" or "The Prouhet-Tarry-Escott Problem"
which are useful but have not yet been quoted in Chen Shuwen's Equal
sums of like powers pages.
- D.H.Lehmer, The Tarry-Escott problem,
Scripta Math, 1947, 37-41.
- E.M.Wright, The Prouhet-Lehmer problem,
Jour.London.Math.Soc, 23(1948), 279-285.
- Hua Loo-Keng, On Tarry's problem, Quart.
J. of Math, 9(1938), 315-320.
- L.J.Lander, Three thirteens, Math. Comp.,
27(1973), 397.
- E.M.Wright, On Tarry's problem (I), Quart.
J. of Math, 6(1935), 261-267.
- E.M.Wright, On Tarry's problem (II), Quart.
J. of Math, , 7(1936), 43-45.
- E.M.Wright, On Tarry's problem (III),
Quart. J. of Math, , 8(1937), 48-50.
- H.Gupta, Selected Topics in Number Theory,
Abacus Press, Kent, 1980, 322-331.
- E.M.Wright, Equal sums of like powers,
Bull. Amer. Math. Soc., 54(1948), 755-757.
- E.M.Wright, Equal sums of like powers,
Proc. Edin. Math. Soc., 8(1949), 138-142.
- Hua Loo-Keng, Improvement of a result of Wright,
Jour.London.Math.Soc, 24(1949), 157-159.
- E.M.Wright, An 'easier' Waring problems,
Jour.London.Math.Soc, 9(1934), 267-272.
- E.M.Wright, The Tarry-Escott and the 'easier'
Waring problems, J.Reine Angew.Math, 311/312(1979), 170-173.
- I.Barrodale, A note on equal sums of like
powers, Math. Comp., 20(1966), 318-322.
- E.M.Wright, Prouhet's 1851 solution of the
Tarry-Escott problem of 1910, Amer. Math. Monthly,66(1959), 199-201.
- H.Kleiman, A note on the Tarry-Escott problem,
J.Reine Angew. Math., 278/279(1975), 48-51.
Last revised March,31, 2001.
Copyright 1997-2001, Chen Shuwen