Integer Solutions
of
a1h
+ a2h + a3h
+ a4h+ a5h+
a6h = b1h
+ b2h + b3h
+ b4h + b5h+
b6h
( h = 1, 2, 4, 6,
8, 10 )
- Nuutti Kuosa discovered the following solution
in 3 Sep1999, using a program written by Jean-Charles Meyrignac.
- 15110+14010+12710+8610+6110+2210=14810+14610+12110+9410+4710+3510
- Chen Shuwen noticed that the above result is
also a solution of ( k = 2, 4, 6, 8, 10 ) .
- [ 22, 61, 86, 127, 140, 151 ] = [ 35, 47, 94,
121, 146, 148 ]
- Using this solution of (
k = 2, 4, 6, 8, 10 ), Chen Shuwen checked all the posible cases in
8 Sep1999, and found the following 7 solutions of ( h = 1, 2, 4, 6, 8,
10 ).
- [ 22, 61, 86, -127, 140, 151 ] = [ -35, 47, -94,
121, 146, 148 ]
- [ 22, 61, -86, -127, 140, 151 ] = [ 35, 47, -94,
-121, 146, 148 ]
- [ 22, 61, 86, -127, -140, 151 ] = [ 35, 47, 94,
-121, 146, -148 ]
- [ 22, 61, -86, 127, -140, 151 ] = [ -35, -47,
94, 121, -146, 148 ]
- [ 22, -61, 86, 127, -140, 151 ] = [ -35, -47,
94, -121, 146, 148 ]
- [ -22, 61, -86, 127, -140, 151 ] = [ -35, 47,
-94, -121, 146, 148 ]
- [ 22, -61, -86, 127, -140, 151 ] = [ 35, -47,
-94, 121, 146, -148 ]
Last revised March,31, 2001.
Copyright 1997-2001, Chen Shuwen