
ON SOLVING THE DIOPHANTINE EQUATION

x3 + y3 + z3 = k ON A VECTOR COMPUTER

D.R. Heath-Brown, W.M. Lioen and H.J.J. te Riele

Abstract. Recently, the first author has proposed a new algorithm for solving the Diophan-
tine equation x3 + y3 + z3 = k, where k is a given non-zero integer. In this paper we present
the detailed versions of this algorithm for some values of k given below, and we describe
how we have optimized and run the algorithm on a Cyber 205 vector computer. A vector-
ized version of the Euclidean algorithm was written which is capable of solving the equations
wixi ≡ 1 mod ni, i = 1, 2, · · · at vector speed. Moreover, the basic double precision arithmetic
operations (+,−,×,/) were vectorized.
The following cases were implemented and run: k = 3, 30, 2, 20, 39 and 42. For k = 3 a
range was searched which includes the cube |x|, |y|, |z| ≤ 108; this considerably extends an
earlier search in the cube |x|, |y|, |z| ≤ 216. No solutions were found apart from the known
ones (1, 1, 1) and (4, 4,−5). For k = 30, which probably is, with k = 3, the case which has
attracted most attention in the literature, no solution was found. It is the smallest case for
which no solution is known and for which one has not been able to find a proof that no so-
lution exist. For k = 2 a parametric form solution is known, but we also found one which
does not belong to this parametric form, viz., (1214928, 3480205,−3528875). For k = 20,
several new large solutions were found in addition to several known ones; this case served as
a (partial) check of the correctness of our program. Finally, for k = 39 we found the first
solution: (134476, 117367,−159380). Hence, this case can be dropped from the list of values
of k (k = 30, 33, 39, 42, · · ·) for which no solution is known (yet).

1. Introduction

Recently [3], the first author has presented a new algorithm to find solutions of the
Diophantine equation

(1) x3 + y3 + z3 = k,

in which k is a fixed positive integer, and the x, y, z can be any integers, positive, negative,
or zero. In order to find solutions with |x|, |y|, |z| ≤ N, this algorithm takes Ok(N logN)
steps, where the implied constant depends on k. In [3] this algorithm is given explicitly for
the case k = 3, but significant changes have to be made for other values of k, depending
mainly on the class number of Q(3

√
k).

For k = 3, the idea of the new algorithm is as follows. If k ≡ 3 mod 9 then x ≡ y ≡ z ≡
1 mod 3. If x, y and z all have the same sign then x = y = z = 1. Otherwise, let x and y
have the same sign, and z the other, then we have |x+y| ≥ |z| ≥ 1. Now let n := x+y and
solve the equation z3 ≡ 3 mod n with z and n having different sign and 1 ≤ |z| ≤ |n|. In

1991 Mathematics Subject Classification. Primary: 11D25, Secondary: 11Y50.
Key words and phrases. Cubic Diophantine equation, vector computer, Euclidean algorithm.

Typeset by AMS-TEX

1

2 D.R. HEATH-BROWN, W.M. LIOEN AND H.J.J. TE RIELE

[3] it is derived by factoring in Q(3
√

3) (which has class number equal to 1) that (n, 3) = 1
and that

n = a3 + 3b3 + 9c3 − 9abc

for some integers a, b, c such that

z ≡ (3c2 − ab)(b2 − ac)−1 mod n

(with z and n having different sign and (b2 − ac, n) = 1). This gives a unique value of z.
We can then solve the equations x3 +y3 +z3 = 3 and x+y = n to find x and y. This yields

x =
n+ d

2
, y =

n− d
2

with d =
√
D and D =

1
3

[
4
(

3− z3

n

)
− n2

]
.

Here, D should be the square of an integer to yield integral x and y. If we choose a = −1,
b = 0 and c = 1, we get n = 8, z = −5, D = 0 and x = y = 4 ((1, 1, 1) and (4, 4,−5) are
the only known solutions for k = 3).

In [6] and [2] solutions of (1) were computed by means of a straightforward algorithm
which for given z and k checks whether any of the possible combinations of values of x and
y in a chosen range satisfies (1). The range chosen in [2] (which includes the one chosen in
[6]) was:

0 ≤ x ≤ y ≤ 216,

0 < N ≤ 216, N = z − x,

0 < |k| ≤ 999.

This algorithm takes O(N2) steps, but it finds solutions of (1) for a range of values of k.
The implied O-constant depends on that range.

It is easily seen that equation (1) has no solution at all if k ≡ ±4 mod 9. There is no
known reason for excluding any other values of k although there are still many values of k
for which no solution at all is known. Those below 100 (and 6≡ ±4 mod 9) are:

(2) k = 30, 33, 39, 42, 52, 74, 75, and 84.

For some values of k infinitely many solutions are known. For example, we have

(9t4)3 + (−9t4 + 3t)3 + (−9t3 + 1)3 = 1,

and
(6t3 + 1)3 + (−6t3 + 1)3 + (−6t2)3 = 2.

These relations give a solution of (1) for each t ∈ Z. For k = 1 many solutions are known
which do not satisfy the above parametric form (e.g., (64, 94,−103)). For more parametric
solutions, see [6], [7] and [5].

It is possible to implement the new algorithm on an arbitrary vector computer. In par-
ticular, the Euclidean algorithm for the computation of (b2−ac)−1 mod n can be vectorized
using standard Fortran. In this paper we present the results of optimizing and running this
algorithm on a Cyber 205 vector computer, for k = 3, 30, 2, 20, 39 and 42. The cases
k = 3 and k = 30 probably are the most intensively studied ones (cf. [2], [6] and [8]).

ON SOLVING THE DIOPHANTINE EQUATION x3 + y3 + z3 = k ON A VECTOR COMPUTER 3

For k = 2 the above parametric solution is known, but we wanted to check whether other
solutions exist. For k = 20 the density of adèlic points is rather high, and relatively many
integer points are known. This case was used as a (partial) check of the correctness of our
program. The smallest value of k > 30 for which no solution is known is k = 33. However,
the fundamental unit of Q(3

√
33) is enormous, and in this case the algorithm becomes very

inefficient. Therefore, we selected the next two cases k = 39 and k = 42.
In Section 2 we give a precise description of the algorithms for the various chosen values

of k. Section 3 presents some details of how we have implemented the algorithms on the
Cyber 205 vector computer and the results obtained. In particular, we describe how we
have vectorized the computation of (b2 − ac)−1 mod n (Section 3.1). The double precision
arithmetic operations which were necessary because of the size of the numbers we wanted
to handle, were vectorized along the lines of [9]. The results of our computations are listed
and discussed in Section 3.2. No (new) solutions were found for k = 3, 30 and 42. For
k = 2 the first solution was found which is not of the parametric form given above. For
k = 20 eight new solutions were found and, finally, for k = 39 we found one solution so this
case can be removed from the list of values of k for which no solution is known.

2. The algorithms for k = 2, 3, 20, 30, 39 and 42
For k = 3 the algorithm is derived and presented in [3]. The other cases can be derived

in a similar way, but with significant changes caused by the facts that prime factors of k
may occur in n (= x + y), and that Q 3

√
k) may not have unique factorization. We first

present the algorithms for all the values of k listed above, except for k = 20: this case is
given separately.

For k 6= 20, the algorithms are organized in such a way that all the solutions of (1) are
found for which

(3) 1 ≤ |z| ≤ |x+ y| ≤ |ε|K3,

where |ε|−1 > 1 is the fundamental unit of Q(3
√
k). This includes the cube |x|, |y|, |z|

≤ 1
2 |ε|K3.

The algorithm for k = 2, 3, 30, 39, 42
Let θ := 3

√
k; for the combination of values of r, a, b and c, given in Table 1:

1. Let a, b, c run over the integers in the ranges

|a|, θ|b|, θ2|c| ≤ Kr1/3,

for suitably chosen K (depending on the available computing resources).
2. Let n := (a3 + kb3 + k2c3 − 3kabc)/r, w := b2 − ac and v := kc2 − ab (r, a, b and c

are such that n is integral).
3a. (k = 2, 3, 39, 42) Use the Euclidean algorithm to find w := w−1 mod n (provided

that w and n are coprime; if not, reject this quadruple (r, a, b, c)).
3b. (k = 30) Take n′ = n if r 6 | b, and n′ = n/r if r|b; use the Euclidean algorithm

to find w := w−1 mod n′ (provided that w and n′ are coprime; if not, reject this
quadruple (r, a, b, c)).

4. Compute z ≡ v ·w mod n with z in the range 1 ≤ |z| ≤ |n| and having opposite sign
to n.

5. Compute D = 1
3 [4(k−z

3

n) − n2]. If D is not the square of an integer, reject this
quadruple (r, a, b, c).

6. Find the solution (x, y, z) = (n+
√
D

2 , n−
√
D

2 , z).

4 D.R. HEATH-BROWN, W.M. LIOEN AND H.J.J. TE RIELE

The algorithm for k = 20

1. Let a, b, c run over the integers in the ranges

|a|, 3
√

20|b|, 3
√

50|c| ≤ K,

for suitably chosen K (depending on the available computing resources).
2a. 2 6 | a, 3 6 | a− (b+ c) :

n′ := a3 + 20b3 + 50c3 − 30abc, w := 2b2 − ac, v := 10c2 − 2ab.

2b. 2 6 | b, 3 6 | c− (a+ b) :

n′ := 2a3 + 5b3 + 100c3 − 30abc, w := b2 − ac, v := 20c2 − 2ab.

2c. 2 6 | c, 3 6 | a+ b+ c :

n′ := 4a3 + 10b3 + 25c3 − 30abc, w := b2 − ac, v := 5c2 − 2ab.

3. Use the Euclidean algorithm to find w := w−1 mod n′ (provided that (w, n′) = 1; if
not, reject the triple (a, b, c)).

4a. Compute

(4) z ≡ v ·w mod n′;

4b1. n := n′, 1 ≤ |z| ≤ |n|, n, z of opposite sign.
4b2. n := 4n′, 1 ≤ |z| ≤ |n|, n, z of opposite sign; there will be four solutions of (4); we

require further that z + n ≡ 2 mod 6.
5. and 6. Similar to steps 5. and 6. of the previous algorithm.

k r restrictions on a, b, c

2 1 a+ 2b+ 4c ≡ 1 or 2 mod 6
and either 2 6 | a

or 2|a, 4 6 | a, b ≡ 1 mod 4
or 4|a, b+ 2c ≡ 1 mod 4

3 1 a ≡ 2 mod 3

30 1 a ≡ 2 mod 3
2 a ≡ 4 mod 6
5 a ≡ 10 mod 15

39 1 a ≡ 2 mod 3
2 a ≡ 1 mod 3, a+ b+ c ≡ 0 mod 2
3 a ≡ 0, b ≡ 2 mod 3
6 a ≡ 0, b ≡ 1 mod 3, a+ b+ c ≡ 0 mod 2
9 a ≡ 0, b ≡ 0, c ≡ 2 mod 3
18 a ≡ 0, b ≡ 0, c ≡ 1 mod 3, a+ b+ c ≡ 0 mod 2

42 1 a ≡ 1 mod 3
3 a ≡ 0, b ≡ 2 mod 3
9 a ≡ 0, b ≡ 0, c ≡ 1 mod 3

ON SOLVING THE DIOPHANTINE EQUATION x3 + y3 + z3 = k ON A VECTOR COMPUTER 5

Table 1. Values of k, r, a, b, and c

3. Implementation on the Cyber 205

We have implemented the algorithms of Section 2 in terms of long vectors, in order to
reach optimal performance on the Cyber 205 vector computer.

A vector version of the Euclidean algorithm (needed in Step 3) was formulated which
has input vectors n and w with components ni and wi respectively, and which computes a
vector u with components ui such that wiui ≡ 1 mod ni. This is described in Section 3.1.

In Step 4 of the algorithm the product v · w becomes too large for the (48 bits-) integer
capacity of the Cyber 205. Therefore, we have written a vectorized double precision version
of the modular multiplication, which returns an integer result vector.

For the arithmetic operations involved in Steps 5 and 6 we also have written vectorized
double precision routines on the Cyber 205 (namely, for vector addition, subtraction, mul-
tiplication and division, and conversion from integer to double precision and vice-versa).
These routines are based on ideas of Schlichting for double precision BLAS (Basic Linear
Algebra Subroutines) on the Cyber 205 [9], to which we refer for details. It should be
noticed that Schlichting had to use the standard Fortran convention for storage of double
precision floating point numbers, i.e., the upper and lower part of a double precision number
are stored in consecutive array locations. This has the disadvantage of yielding a stride two
in vector operations on the double precision numbers. In order to avoid these strides in our
implementation, we have stored the upper and lower parts in two separate arrays.

In Section 3.2 we present the results of running our algorithms.

3.1 Solving the equation wx ≡ 1 mod n

For given w and n, the scalar equation wx ≡ 1 mod n, where gcd(w, n) = 1 and 1 ≤
w < n, can be solved as follows. Consider the regular continued fraction (abbreviated: c.f.)
expansion of the rational number w/n. If c/d is the penultimate convergent of this c.f., then
we have wd−nc = ±1, so that wd ≡ ±1 mod n. Here, the proper sign depends on the parity
of the number of convergents of the c.f. of w/n. So we need to compute the denominators
of the convergents of the c.f. of w/n. To that end we just follow the Euclidean algorithm for
computing gcd(w, n), and we update the denominator of the convergent at each step (with
the denominators from the previous two steps). The resulting algorithm looks as follows.

Scalar algorithm to compute u = w−1 mod n

sign = 1; d0 = 0; d1 = 1

a = w; b = n
10 q = bb/ac; r = b − q×a

if r = 0 then

C now a contains gcd(w,n)
if a = 1 then

u = sign×d1

else
u = 0

endif

return
endif

6 D.R. HEATH-BROWN, W.M. LIOEN AND H.J.J. TE RIELE

h = q×d1 + d0; d0 = d1; d1 = h
b = a; a = r; sign = −sign
goto 10

For the vectorization of this algorithm, we store the pairs (wi, ni) (i=1,..., l, where in
our program we take l = 10,000) into the vectors w and n. All the scalar variables of
the algorithm, except sign, are turned now into vectors of length l. Since not all ui’s will
be completed in the same number of Euclidean algorithm steps, we introduce a bit vector
mask (the components of which can only be ‘0’ or ‘1’) for ‘compressing out’ completed
(wi, ni)-pairs. To keep track of the original locations, we maintain an index vector ind,
initially [1: l], and compress this simultaneously with w and n. The vector algorithm will
terminate as soon as the length of the compressed vectors becomes zero.

In the vectorized algorithm given below the statement mask = (r6=0) means that
mask(i)=1 if r(i) 6=0 and mask(i)=0 if r(i)=0. The statement compress(a, b, c), where b
is a bit vector, means that only those elements of the vector a are stored in (consecutive
locations of) c for which the corresponding elements of b are 1. The statement scatter(a,
d, e) means that the elements of a are stored in a location of e, the index of which is
determined by the value of the corresponding element of d. (For simplicity, we assume here
that all the gcd’s of corresponding components of the input vectors n and w are 1. In our
program we use a second bit vector to handle gcd’s > 1.)

Vector algorithm to compute u = w−1 mod n

ind=[1: l]
sign = 1; d0 = 0; d1 = 1
a = w; b = n

10 q = bb/ac; r=b−q×a
C generate the bit vector mask

mask = (r6=0)
C store those components of d1 for which the corresponding components
C of r are 0, into the proper place in u

compress(ind, ¬ mask, order)
compress(d1 , ¬ mask, t)
if (sign = −1) t = −t
scatter(t, order, u)

C compress ind, q, r, a, d0, and d1 for next step
compress(ind, mask, ind)
compress(q, mask, q)
compress(r, mask, r)
compress(a, mask, a)
compress(d0, mask, d0)
compress(d1, mask, d1)
if (length(ind) = 0) return
h = q×d1 + d0; d0 = d1; d1 = h
b = a; a = r; sign = −sign

ON SOLVING THE DIOPHANTINE EQUATION x3 + y3 + z3 = k ON A VECTOR COMPUTER 7

goto 10

It should be noted that most of the vector movements in the two lines before the “goto 10”
- line can be accomplished by operating on pointers to the vectors rather than on the vectors
themselves (on the Cyber 205, these pointers are called descriptors).

3.2. Results

We have run our program for solving (1) for the values of k given in Section 2, for various
values of K. The results are listed in Table 2. This table also gives, for k = 2, 3, 30, 39, 42,
the size of the largest (x, y, z)-cube which is contained in the range of searched (a, b, c)-
values. This number equals the bound 1

2
|ε|K3 (truncated to three decimal places) which

is given below (3) in Section 2. The fundamental units ε were taken from [1, Table 2 on
page 270]. Unfortunately, the case k = 20 is slightly different and we have not attempted to
derive such an upper bound in this case. However, when we inspect the size of the solutions
found for k = 20, it seems that the largest cube covered in this case is comparable with
the largest cubes covered in the cases k = 2 and k = 3. We only present the new solutions
found and not those which were already given in [6] and [2] (with one exception: the smallest
solution we list for k = 20 was not explicitly given in [2], but in an accompanying table
which was deposited in the UMT-file of Mathematics of Computation).

k ε(θ = 3
√
k) K |x|, |y|, |z| ≤ x y z

2 θ − 1 1000 1.29× 108 1214928 3480205 −3528875

3 θ2 − 2 1500 1.35× 108 none

20 −1
2θ

2 + θ + 1 1000 3049 8427 −8558
99637 607191 −608084

136912 264145 −275877
−305081 −523091 555618
−378203 −555737 608880
−2006066 −3431087 3645939
−3633722 −9161277 9348001
15670213 40439559 −41209136
−89598233 −374850480 376549093

30 −3θ2 + 9θ + 1 2000 1.64× 106 none

39 2θ2 − 23 1000 3.15× 105 134476 117367 −159380

42 12θ2 − 42θ + 1 1000 1.57× 104 none

Table 2. New solutions of (1)

The total amount of CPU-time for the computation of Table 2 was about 30 hours.
To give an impression of the speed of our program: the job for k = 30, r = 1, K = 2000,
consumed 3934 seconds CPU-time on the Cyber 205, 65% of which was spent on the solution

8 D.R. HEATH-BROWN, W.M. LIOEN AND H.J.J. TE RIELE

of the equation wx ≡ 1 mod n′ (step 3b of the algorithm given in Section 2). The total
number of (a, b, c)-triples treated in this job was about 7.12× 108.

All new solutions were found several times, for different combinations of a, b, and c.
Of course, this corresponds to using different associates in Q(3

√
k). For example, the so-

lution for k = 20: (x, y, z) = (136912, 264145,−275877) was found three times, viz., for
(a, b, c) = (−47, 8, 18), (53,−129, 81), and (443, 170, 121). For k = 2, the solution (x, y, z)
= (1214928, 3480205,−3528875) was found for (a, b, c) = (165,−12, 16) and for five other
(a, b, c)-triples.

In order to see how fast the length of the vectors in the algorithm for the computation
of w−1 mod n tends to zero, we have counted the number of steps of this algorithm
for k = 3, K = 255 (which is representative for all our experiments) so that |a| ≤ 255,
|b| ≤ 176 and |c| ≤ 122. Since a ≡ 2 mod 3, the number of (a, b, c)-triples to be handled is
d(2×255+1)/3e×(2×176+1)×(2×122+1) = 14, 788, 935. Among these, there is no case
with n = 0, there are 851 cases with w mod n = 0 (most of these have w = 0), and there are
1,671 cases with w mod n = 1, so that w−1 mod n = 1. For the remaining 14,786,413 cases,
the continued fraction algorithm found 10,390,393 cases with gcd = 1 (70.3%) and 4,396,020
cases (29.7%) with gcd > 1. In about 63% of the 10,392,064 cases for which w−1 mod n
could be computed, we found D < 0 in step 5 of our algorithm. In only six cases D was
the square of an integer, yielding the solution (x, y, z) = (4, 4,−5) six times. Table 3 gives
the distribution of the numbers of steps in the continued fraction algorithm to find the gcd,
including percentages, and cumulative percentages. The average number of steps is 8.59. If
ci is the cumulative percentage entry in the row numbered i, then the vector length after i
steps of the algorithm is given by 100 ∗ (100− ci) (the original length is 10,000).

i #(i) percentage cum. percentage

1 16985 0.1 0.1
2 54291 0.4 0.5
3 190366 1.3 1.8
4 442659 3.0 4.8
5 831022 5.6 10.4
6 1412828 9.6 19.9
7 1924764 13.0 33.0
8 2302600 15.6 48.5
9 2336986 15.8 64.3

10 2023481 13.7 78.0
11 1496212 10.1 88.1
12 934761 6.3 94.5
13 494258 3.3 97.8
14 216375 1.5 99.3
15 78800 0.5 99.8
16 23285 0.2 100.0
17 5541 0.0 100.0
18 1018 0.0 100.0
19 163 0.0 100.0
20 18 0.0 100.0

ON SOLVING THE DIOPHANTINE EQUATION x3 + y3 + z3 = k ON A VECTOR COMPUTER 9

Table 3. Numbers of cases with i steps in the

continued fraction expansions, for i = 1, · · · , 20

We would like to compare our results with the theoretical results which are known about
the number of steps needed in the Euclidean algorithm [4, Sections 4.5.2 and 4.5.3].

If w and n are random numbers, the probability that they are relatively prime is 6/π2(≈
0.608) [4, Section 4.5.2, Theorem C]. However, since a ≡ 2 mod 3 we have n ≡ 2 mod 3 so
gcd(w, n) cannot be a multiple of 3. Following [4, Section 4.5.2, Exercise 13], we find that,
given two random positive integers which do not have a common divisor 3, the probability
that they are relatively prime is 27/(4π2) ≈ 0.684. This agrees better with the fraction of
0.703 of the total number of pairs (w, n) we found to be relatively prime. The difference may
be explained by the fact that of course the numbers w and n are not random. Moreover,
we have observed that certain primes like 7, 13, 19, 31 turn out not to occur as gcd-values
in our experiments. This is easily proved for a given prime p by checking all the possible
residue classes mod p for w and n.

Now we turn to the number of steps in the Euclidean algorithm. The values which can be
assumed by w = b2−ac and n = a3 +3b3 +9c3−9abc for |a| ≤ K, |b| ≤ K/θ and |c| ≤ K/θ2

(K = 255, θ = 3
√

3), are approximately −(K/θ)2 < w < 2(K/θ)2 and −4K3 < n < 4K3.
Hence n is generally much larger than w, so we start by reducing n mod w in order to get
numbers which are generally of the same size (and we add 1 to the number of steps in our
analysis). For w ≈ 2(K/θ)2 (≈ 62521) the maximum number of steps is bounded by [4,
Summary of Section 4.5.3] 1 + d4.8 log10w − 0.32e ≤ 24 which agrees with the number 20
observed in our computations.

An upper bound for the average number of steps is [loc. cit.] 1 + 1.9405 log10w. For
w = 2(K/θ)2 this yields 10.3. We can expect that |w| lies in the interval [1, (K/θ)2) with a
probability which is larger (at least by a factor of 2) than the probability that w lies in the
interval ((K/θ)2, 2(K/θ)2). In fact, we observed that about 92.5% of the values of w are
< (K/θ)2.

The actual average number of steps 8.6 we found corresponds to w ≈ 1
4 (K/θ)2, which is

heuristically consistent with the quadratic form of the formula for w.

Acknowledgements. We are grateful to the referee for his criticism which helped to
improve this paper. We acknowledge the provision of computer time on the Cyber 205
by the former Dutch Working Group on the Use of Supercomputers (the present Dutch
National Computing Facilities Foundation). The second author wishes to thank Dik Winter
in particular for his very informative discussions on double precision arithmetic.

References

1. J.W.S. Cassels, The rational solutions of the Diophantine equation Y 2 = X3 − D, Acta Math. 82
(1950), 243–273.

2. V.L. Gardiner, R.B. Lazarus & P.R. Stein, Solutions of the Diophantine equation x3 + y3 = z3 − d,
Math. Comp. 18 (1964), 408–413.

3. D.R. Heath-Brown, Searching for solutions of x3 + y3 + z3 = k, Birkhäuser (to appear).

4. Donald E. Knuth, The Art of Computer Programming, Vol. 2 Seminumerical Algorithms, Addison-
Wesley, 1981.

5. D.H. Lehmer, On the Diophantine equation x3 +y3 +z3 = 1, J. London Math. Soc. 31 (1956), 275–280.

6. J.C.P. Miller & M.F.C. Woollett, Solutions of the Diophantine equation x3 + y3 + z3 = k, J. London
Math. Soc. 30 (1955), 101–110.

7. L.J. Mordell, On an infinity of integer solutions of ax3 + ay3 + bz3 = bc3, J. London Math. Soc. 30
(1955), 111-113.

10 D.R. HEATH-BROWN, W.M. LIOEN AND H.J.J. TE RIELE

8. M. Scarowsky & A. Boyarsky, A note on the Diophantine equation xn+ yn+ zn = 3, Math. Comp. 42
(1984), 235–237.

9. J.J.F.M. Schlichting, Double Precision BLAS, H.J.J. te Riele, Th.J. Dekker and H.A. van der Vorst
(eds.), Algorithms and Applications on Vector and Parallel Computers, North-Holland, 1987, pp. 229–
249.

Magdalen College, Oxford, OX1 4AU, England

Centre for Mathematics and Computer Science (CWI), Kruislaan 413, 1098 SJ Amsterdam, The Nether-
lands. E-mail adresses: herman@cwi.nl and walter@cwi.nl

